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Abstract. We present a rewriting algorithm for efficie.ntly testing future

time Linear Temporal LcNic (LTL) formulae on finite execution traces.

The standard models of LTL are infinite traces, reflecting the behavior

of reactive and concurrent systems which conceptually may be continu-

ously alive. In most past applications of LTL, theorem provers and model

checkers have been used to formally prove chat down-scaled models sat-

isfy such LTL specifications. Our goal is instead to use LTL for up-scaled

testing of real software applications, corresponding to analyzing the con-

formance of finite traces against LTL formulae. We first describe what

it means for a finite trace to satisfy an LTL property and then suggest

an optimized algorithm based on transforming LTL formulae. We use

the Maude rewriting logic, which turns out to be a good notation and

being supported by an efficient rewriting engine for performing these ex-

periments. The work constitutes part of the Java PathExplorer (JPAX)

project, the purpose of which is to develop a flexible tool for monitoring

.Java program executions.

1 Introduction

Future time Linear Temporal Logic (future time LTL), introduced by Pnueli

in 1977 [21], is a logic for specifying temporal properties about reactive and

concurrent systems. Future time LTL provides temporaI operators that refer to

the future/remaining part of a trace relative to a current point of reference. We

shall use the shorthand LTL when it is clear from the context that we mean

future time LTL. The models of LTL are infinite execution traces, reflecting the

behavior of such systems as ideally always being ready to respond to requests,

operating systems being an example. LTL has typically been used for specifying

properties of concurrent and interactive down-scaled models of real systems, such

that fully formal program proofs could subsequently be carried out, for example

using theorem provers [14] or mode[ checkers [9]. However, such formal proof

techniques are usually not scalable to real sized systems without an extra effort

to abstract the system to a model which is then analyzed. Several systems are

currently being developed that apply model checking to software [4] [15 t [3] [20]

[6] I24], including our work work [I0] [25 I. In this paper we restrict ourselves

to investigate the use of LTL for testing whether single finite execution traces
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c_,pr_,._,nr, r.he {'orrmda such tha_, it. can be used r,o efficienr, ly analyze r_he trace

;_s it is r,raversed. We will presen_ such a data structure. We will present and

implement m_r logics ;rod algorithms in Maude [I.]. a high-perfl)rmance system

_pporting both membership equational logic 11191and rewriting logic {18]. The

current version of Maude can do up _,o3 million rewritings per second on _00.X,IHz

processors, ;rod its compiled version is intended to support 1.3 million rewritings

per second _. The decision to use Maude has made it very easy to experiment

with logics and algorithms. Later realizations of the work can be done in a

.standard programming language such as Java or C++. In [13] we have for ex-
ample described a data structure used to represent an LTL formula as a minimal

finite sta_e machine, based on a concept called finite transition trees. This struc-

ture can then be represented and interpreted within Java. In [22] we fur_her-

more describe a dynamic programming algorithm for checking LTL formulae on

execution traces. Our colleague Dimitra Giannakopoutou has furthermore im-

plemented a Bfichi automata inspired algorithm adapted to finite trace LTL.
However, so far the speed of Maude is very promising, suggesting that Maude

can be used not only for prototyping but also for practical monitoring.

The work constitutes part of the Java PathExplorer (JPAX) tool [12, 13] for
monitoring Java program executions. JPAX facilitates automated instrumenta-

tion of Java byte code, which then emits events to an observer during execution.

The observer can be running a Maude process as a special case, hence Maude's

rewriting engine can be used to drive a temporal logic operational semantics

with program execution events. JPAX can be regarded as consisting of three
main modules: an instrumentation module, an observer module, and an inter-

connection module that ties them together through the observed event stream,

see Figure 1. The instrumentation module performs a script-driven automated

instrumentation of the program to be observed, using the bytecode engineering

tool Jtrek I2]. The instrumented program, when run, will emit relevant events to
the interaction module, which further transmits them to the observation mod-

ule. The observer may run on" a different computer, in which case the events are

transmitted over a socket. When the observer receives the events it dispatches

these to a set of observer rules, each rule performing a particular analysis that
has been requested in the verification script. Observer rules are written in Java,

but can call programs written in other languages, such as in this case Maude. In

addition to checking such high level requirements, rules can also be programmed

to perform low level error pattern analysis of, for example, multi-threaded pro-

grams, identifying error-prone programming practices, such as unhealthy locking

disciplines that may lead to data races and/or deadlocks. The specification script

Personal communication by Jos_ Meseguer.
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Fig. 1. Overview of JPAX

The idea of using temporal Logic in program testing is not new, and at our

knowledge, has already been pursued in the commercial Temporal Rover tool

(TR) [5], and in _he MaC tool [17]. Both tools have greatly inspired our work.

Our basic contribution in this paper is to show how a rewriting system, such

as Maude, makes it possible to experiment with monitoring logics very fast and

elegantly, and furthermore can be used as a practical program monitoring en-

gine. This approach makes it possible to formalize ideas in a framework close to

standard mathematics. The formula transforming approach suggested is a new

and efficient way of testing LTL formulae. A previous version of the paper, pub-

lished as a technical report Ill], presents a simplified action based formalization

of LTL rather than ;he state based more realistic framework presented here,

which is the one currently implemented in JPAX. In [12] and [131 we describe a

formalization of past time LTL (as well as future time LTL), again illustrating

the succinctness of new logic definitions.

Section 2 contains preliminaries, including an introduction to Maude, propo-

sitional logic and the standard definition of propositional LTL with its infinite

trace models, Section 3 presents a finite trace semantics for LTL and then its

implementation in Maude. Although abstract and elegant, this implementation

is not efficient, and Section 4 presents an efficient implementation using a for-



2 Preliminaries
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ificar.ion syst+.'rn+ then a relatively stand;trd procedure u> r_dtu'e propositional

formtzlae. ;rod then reminds the proposit.ionai LTL widt its infinite :race models.

2.1 Maude and Logics for Program NIonitoring

Maude [1] is a freely distributed high-performance system in the OBJ [8] alge-

braic specification family, supporting both rewriting logic !18] and membership

equational logic [19]. Because of its efficient rewriting engine, able to execute

3 million rewriting steps per second on currently standard hardware configu-

rations, and because of its metalanguage features, Maude turns out to be an

excellent tool to create executable environments for various logics, models of

computation, theorem provers, and even programming languages. We were de-

lighted to notice how easily we could implement and efficiently validate our

algorithms for testing LTL formulae on finite event traces in Maude, admittedly
a tedious task in C++ or Java, and hence decided to use Maude at least for the

prototyping stage of our runtime check algorithms.

We very briefly and informally remind some of Maude's features, referring

the interested reader to the manual [11 for more details. Maude supports mod-

ularization in the OBJ style. There are various kinds of modules, but we are

using only functional modules which follow the pattern "fmod <name> is <body>

e,_dfm". The body of a functional module consists of a collection of declarations,

of which we are using importing, sorts, subsorts, operations, variables and equa-
tions, usually in this order.

We next introduce some modules that we think are general enough to be used

within any logical environment for program monitoring that one would want to

implement by rewriting. The next one simply defines atomic propositions as an
abstract data type having one sort, atom and no operations or constraints:

fmod ATDM is sort Itom . endfm

The actual names of atomic propositions will be automaticalIy generated in an-

other module that extends ATOM,as constants of sort Ato.,. These will be generated

by the observer at the initialization of monitoring, from the actual properties
that one wants to monitor.

An important aspect of program monitoring is _hat of an (abstract) execution

trace, which consists of a finite list of events. We abstract events by lists of atoms,

those that hold after the action that generated the event took place. The values

of the atomic propositions are updated by the observer according to the actual

state of the executing program and then sent to Maude as a term of sort r-vent:



(_od TRACE t_ pcotgct_nE AFDM

lubsort_ AD)m < _ent C _v_nc- _cace

,_p nil -, _vent

,_p ._ Atom Event -> Ev,nt [pr_c 23]

oe .- Ev_n_ -> _vent*

op .._ _vent rr_ce -> trace [pr_c 25]

end_

The statern(,nr,protectzng ATOM imports the module ATOM,The above isa com-

pact way to use mz_-fi_ and order-sorted notation to define an abstract data

r,ype of traces: a t,race is a comma separated list of events, where an event is just

a list of atoms. Operations can have attributes, such as the precedences above,

which are written between square brackets. The attribute prec gives a prece-

dence to an operator a, thus eliminating the need for most parentheses. Notice

the special sort Evente which stay for terminal events, i.e., events that occur at

_he end of traces. Any event can potentially occur at the end of a trace. It is

often the case that ending events are treated differently, like in the case of finite

trace linear temporal logic; for this reason, we have introduced the operation _*
which marks an event as terminal.

Synta_x and semantics are basic requirements to any logic, in particular to

those logics needed for monitoring. The following module introduces what we

believe are the basic ingredients of monitoring logics. We found the following

very useful for our logics, but of course, the user is free to change it if he/she
finds it inconvenient:

fmod LOGICS-BASIC is protecting TRACE .

sor_ Formula . subsor_ Atom < Formula .

ops true false : -> Formula .

op [_] : Formula -> Sool [strat (1 0)] .

eq [_rue] - true . eq [false] - false .

vats A k' : Atom . vat E : Event . var E* : Event* . var T : Trace .

op _{_} : Formula Even=, -> Formula [prec I0] .

eq _rue{E,} = _rue . eq false{D} = false .

eq A{nil} _ false .

eq A{A'} • if A == A' then true else false fi .

eq A{A' E} = if k == k' then true else A{E} fi .

eq A{E -} = k{Z} .

op _I=_ : Trace Formula -> Bool [prec 30] .

eq T I= =rue • :rue .

eq T I• false = false .

eq g I= k = [A{E}] .

eq g,T I= k = g I= A .

endfm

The first block of declarations introduces the sort Formula which can be thought

of as a generic sort for any well-formed formula in any logic. There are two

designated formulae, namely =rue and fabe, with the obvious meaning, together

with a "projection", denoted [_], of any formula into a boolean expression. The

only role of this operation is to check whether a logical formula is violated or not,

each logic being allowed to refine this operator according to its policy; the sort

-' Underscores are places for arguments.

s The lower the pr<edence number, the tighter the binding.
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right., (_ -_ta.yin_ ['_[" the ,q)erator itself. The definition of [_] c,m be exr.emb,d

wit_hin other flirt.her logics if neede_l, like in r,he case of proposit.ion c,tlcuh/s (see

next, subsection). The second block d_,fines the operation _(_} which t,akes n.

formula and an event and yiehls another formula. The intuition for t.his operation

is that it ;evaluates" the formula in the new state and produces a proof obligation

as another formula for the subsequent events, if needed. [f the ret.urned formula is

:rue or false then it means _ha_ _he formula was satisfied or violated, regardless

of the rest of the execution trace; in this case, a message can be returned by the

observer. As we'll soon see, each logic will further complete the definition of this
operator. Finally, the satisfaction relation is defined together with a few obvious

properties.

2.2 Propositional Calculus

A rewriting decision procedure for propositional calculus due to Hsiang [16] is

adapted and presented. It provides the usual connectives _/\_ (and), _÷÷_ (ex-

clusive or), _\/_ (or), !_ (negation), _->_ (implication), and _<->_(equivalence).

The procedure reduces tautology formulae to ghe constant true and all the oth-

ers to some canonical form modulo associativity and commutativity. An unusual

aspect of this procedure is that the canonical forms consist of exclusive or of

conjunctions. Even if propositional calculus is very basic to almost any logical

environment, we decided to keep it as a separate logic instead of being part of
the logic infrastructure of JPAX. One reason for this decision is that its seman-

tics could be in conflict with other logics, for example ones in which conjunctive
normal forms are desired.

An OBJ3 code for this procedure appeared in [8I. Below we give its obvi-

ous translation to Maude together with its finite trace semantics, noticing that

Hsiang [16] showed that this rewriting system modulo associativity and commu-

tativity is Church-Rosser and terminates. The Maude team was probably also

inspired by this procedure, since the buihin BO0L module is very similar.

fmod P_.OP-C_LC is _ztending LOGICS-BASIC .

_*_ Co_sT.ruc_ors _

op _/\_ : Formula Formula -> Formula [assoc toms prec 15] .

op _÷*_ : Formula Formula o> Formula [assoc comm prec 17] .

vats I ¥ Z : Formula .

eq true /\ I - I .
• q false /\ I • f_ls_ ,

eq I I\ I = I ,

• q fals_ +* X = X .

eq I ++ l = false .

eq X I\ (T *+ Z) • X /\ Y ** X /\ Z .
• ee Oerived opera£ors ei_

op _\/_ : Formula Formula -> Formula [assoc prec 19] ,

op ! : Formula -> Formula [prec _3] .

op -> : Formula Formula -> Formula [prec 21] ,

o 9 _<->_ : Formula Formula -> Formula [prse 23] .

eq I \I _ • X /\ T ++ I *÷ T .



°*_ _*_ntt_ trio* es_'maflttc,s

_q i" != _ I' _ • T I, X and I' i= F

_q (_C /\ Y)(E-_ - I{E._ I', YCE._

• q _Z ,* Y)(E-} - ,I{E,} ** Y(E-F

•q Cx/x y]. [x]_d [Y],
_q IX -. Y] • IX]zor CYJ•

end_,_

Operators are again declared in mix-fix notatien and have attributes bet, ween

_quared bracket's, such as assoc, co= and prec <number>. Once the module above
is loaded _ m .Maude, reductions can be done ;_s follows:

red ,i -> b /\ _: <-> Ca -> b) IX Ca -> c) .--> C.rue

_'ed a <-> ! b _$$> a +÷ b

Notice that one should first declare the constants a, b and c. The last six equa-

tions are related to the semantics of propositional calculus. Since [_] _ is eagerly

evaluated, Ill will first evaluate x using propositional calculus reasoning and

then will apply one of the last two equations if needed; these equations will not

be applied normally in practical reductions, they are useful only in the correct-
ness proof in Theorem 1.

2.3 Linear Temporal Logic

Classical LTL provides in addition to the propositional logic operators the tem-

poral operators el_ (always), <>_ (eventually), _tr_ (until), and o_ (next). An

LTL standard model is a function t : sV "÷ _ 2p for some set of atomic proposi-

tions 79, i.e., an infinite trace over the alphabet 2_', which maps each time point

(a natural number) into the set of propositions that hold at that point. The

operators have the following interpretation on such an infinite trace. Assume

formulae x and Y. The formula OX holds if I holds in all time points, while <>x

holds if x holds in some future time point. The formula x u Y (x until _') holds if

holds in some future time point, and until then l holds (so we consider strict

until). Finally, o x holds for a trace if x holds in the suffix trace starting in the

next (the second) time point. The propositional operators have their obvious

meaning. As an example illustrating the semantics, the formula [] (x -> <>Y) is

true if for any time point (O) it holds that if r is true then eventually (<>) 't is
true. Another similar property is O (x -> o(Y tr z)), which states that whenever

x holds then from the next state Y holds until eventually z holds. It's standard

to define a core LTL using only atomic propositions, the propositional operators
!_ (not) and _/',_ (and), and the temporal operators o_ and u, and then define

all other propositional and temporal operators as derived constructs. Standard
equations are <>X = true U Xand []x = !<>_.

Either by typing it or using the command in <filename>.



3 Einite Trace Linear Temporal Logic
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f_rmula. 'Gr {irsr_ presenr, a semanr, ics _Jt"tinir, e r.rac:e LTL u_ing st,arldard rrlo.th-

,,ma_r,i<;d _ot.ar, ion. Then we prese, nr, a sp_'cification in M_ude of a finite :race

semanth's. Whereaks r,he former sem;tnr, ics uses universal and existential quantifi-

cation, r,he second Mau(le specification is defined using recursive definitions that.

have a straight.forward operational rewriting interpretation and which therefore
can be execut, ed.

3.1 Finite Trace Semantics

As mentioned in Subsection 2.1, a trace is viewed as a sequence of program

states, each state denoting the set of propositions that hold at _hat state. We

shall outline the finite trace LTL semantics using standard mathematical nota-
tion rather than Maude notation. Assume two total functions on traces, head:

1"race --+ _ve_ returning the head event of a trace and length returning the

length of a finite trace, and a partial function tail : Trace --+ Trace for taking the

tail of a trace. That is, head(e, t) = head(e) = e, tail(e, t) = t, and length(e) = 1

and length(e, t) = 1 + length(t). Assume further for any trace t, that ti denotes

the suffix _race that starts at position i, with positions starting at 1. The satis-

faction relation _- C_Trac_ x Formula defines when a trace t satisfies a formula

f, written t _ f, and is defined inductively over the structure of the formulae

as follows, where _ is any atomic proposition and X and _ are any formulae:

t _ A iff A _ he_(t)
t _ =ru, iff true,
t _ fa!se iff false,
t _ I /\ ¥ifft U-land t_''---'¢,r--
t_X ÷+ rifft _x×or t _ r,
t _ [IX iff (V d 5 _ength(t)) ti _ I
t _ <>I iff (q i < length(t)) ti _ I
t _ X U T iff (=. i < length(t)) (tl _Tand ('_.7 < i) t, _:1[)
t _ o I iff (if tail(t) is defined then _ail(t) _- X else t _-- X)

Notice that finite trace LTL can behave quite differently from standard in-

finite trace LTL. For example, there are formulae which don't hold in infinite
trace LTL but hold in finite trace LTL; such as <>([3 t \/ [J ! _), and there

are formulae which hold in infinite trace LTL and do not hold in finite trace LTL,

such as the negation of the above. The formula above is satisfied by any finite

trace because the last event/state in the trace either contains A or it doesn't.

3.2 Finite Trace Semantics in NIaude

Now it can be relatively easily seen that the following Maude specification cor-
rectly _'implements" the finite trace semantics of LTL described above. The

only important deviation from _he rigorous mathematical formulation described

above is _hat the quantifiers over finite sets of indexes are expressed recursiveiy.
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• .° jTnt,t_

'_p [1. F,_,,'mu!.,_ -_ FormuLa [pr,c LL]

,,p <> FormuLa -_ FormuL_ [pr*c ILl

op U Formula Formula -_ Formula .fpr_c 14]

op o_ Formula -> Formuta [p_'ec Ell

• -" _emant _CS

'l_rs _ f FormuLa vat E : ;_'tent vat" T Tr_ce

_q g r= C] I - E I= I

eq E,T I- El _ - g,T I- I and T I- C] I

oq g I= <> I = g J_ I ,

eq E,T J= <> I - _.,T ]= I or T I= ¢> X

eq _ l= X U "f = E l- ? .

eq E,T I= I _/ Y - g,r I= Y or g.T ]= I _d T I= X U Y .

eq g - o I - E I= I .

eq g,T = o I[ - T 1= .I .
end_'m

Notice that only the temporal operators needed needed declarations and seman-

tics, the others being already defined in PKOP-CALC and LOGTCS-BASIC. and that

the definitions that involved the functions head and tail were replaced by two al-

ternative equations. One can now directly verify LTL properties on finite traces

using Maude's rewriting engine, by commands such as

rld a b, a, c a, ab, ¢b, ab, a, c a, ab, ¢b I= [] (a -> <>b) .

rsd a b, a, c a, a b. ¢ b, a b, a, c a, a b, c b I= <> (! [](a -> 4> b)) .

which should return the expected answers, i.e., :rue and false, respectively. The

algorithm above does nothing but blindly follows the mathematical definition of

satisfaction and even runs reasonably fast for relatively small traces. For exam-

ple, it takes _ about 30ms (74k rewrite steps) to reduce the first formula above

and less than ls (254k rewrite steps) to reduce the second on traces of 100 events

(10 times larger than the above). Unfortunately, this algorithm doesn't seem to

be tractable for large event traces, even if run on very performant platforms.

As a concrete practical example, it took Maude 7.3 million rewriting steps (3

seconds) to reduce the first formula above and 2.4 billion steps (1000 seconds)

for the second on traces of 1,000 events; it couldn't finish in one night (more
than 10 hours) the reduction of the second formula on a trace of 10,000 events.

Since the event traces generated by an executing program can easily be larger

than 10,000 events, the trivial algorithm above can not be used in practice.

A rigorous complexity analysis of the algorithm above is hard (because it has

to take into consideration the evaluation strategzy used by Maude for terms of sort

Bool) and not worth the effort. However, a simplified analysis can be easily made
if one only counts the maximum number of atoms of the form event I= atom

that can occur during the rewriting of a satisfaction term, as if all the boolean
reductions were applied after all the other reductions: let us consider a formula x

= [] ([] (... (C] A) ...)) where the always operator is nested m times, anda

trace T of size n, and let T(R, m) be the total number of basic satisfactions event
1= atom that occur in the normal form of the term T I= X if no boolean reductions

were applied. Then, the recurrence formula T(n, m) = T(R - 1, m) + T(n, m - l)
m m-I

follows immediately from the specification above. Since (_) = (_-l) + (,_-i),

5 On a 1.TGHz. [Gb memory PC.



4 An Efficient Rewriting Algorithm

[n this s_,ction ,.w, sh,_ll present a more efficient rewriting semantics for LTL.

b;used _n r.he id_n of consuming the events in the r,race. one bv one. and updatiag

n _ta_,a structure (which is also a _'ormula) corresponding to the effect of the event

on the value of r,he formuIa. Our decision to write an operational semantics this

way was motivated by an attempt to program such an algorithm in .lava, where

such a solution would be the most natural..-ks it turns out, it also yields a more

efficient rewriting system.

4.1 The Main Algorithm

We implement this algorithm by extending the definition of the operation

_{_} : Formula Event* -> Formula tO temporal operators, with the following in-

tuition. Assuming a trace V.,T consisting of an event E followed by a trace T, then

a formula X holds on this trace if and only if X{E} holds on the remaining trace W.

If the event v. is terminal then x(E ,} holds if and only if x holds under standard

LTL semantics on the infinite trace containing only the event _-.

fmod LFL-KEVISED is protac_ing LTL .

vars I Y : Formula _. var E : Evan_ . var T : Trace .

aq ([] X){E} = [] x /\ X(E} .
•q ([] I){E .} = X{E o) .
eq (<> I){E} = <> I \/ I{E} .
• q (<> I){E *} - I{E .} .
eq (o I){E} _ _ .

eq (o _){E .} = _{E .} .

eq (x g Y)(E}= _(z)\/ X(E}/\ X u Y .
eq (I U Y)(E *} = _{E .} .

op _F-_ :Trac= Formula -> Bool [s:rat (2 0)] .

oq z I- x = [x{zo}]
eq E,T }- X = T I- X{E} .

endfm

The rule for the temporal operator []X should be read as follows: the formula x

must hold now (X{E}) and also [n the future ([] x). The sub-expression X{E} repre-

sents the formula that must hold for the rest of the trace for X to hold now. As an

example, consider the formula [] <>A. This formula modified by an event s c (so

A doesn't hold) yields the rewritings sequence ([] <>A) {B c} -+ [] <>A /\ (<>A) (B

C} -+ []<>A /\ (<>A \/ A(B C}) -+ []<>A /\ (<>A \/ false) ---+[]<>A /\ <>A, while

the same formula transformed by A c (so A holds) yields ([]<>A)(A C} ---+ [']<>A

/\ (<>A){A C} -_- []<>A /\ (<>A \/ A{A C}) _ []<>l /\ (<>l \/ true) --* []<>A

/\ true _ []<>A, i.e.,the same formula. Note that these rules spell out _he se-

mantics of each temporal operator. An alternative solution would be to define

some operators in terms of others, as is typically the case in the standard se-

mantics for LTL. For example, we could introduce an equation of the form: <>x



= _.ru_.!:/.aa_l thrn _'limi.at,,rh,'v_,wvi_in_,_uh' I'ot'<>_ in _ll,';tb,_w'_n,,_luh'.

ghis t_:_,lld_' _'v,'ur, u;diy *lctiI_,*s it iww sat.ist';tcti_m t',qatiou _I-_ t_,'t.w_'eu
_.r;tc_'s ;twt Corrnulae. The t,>rrn Z I- X is {_vgfluated now by ;m itrr;ttive tr;tver-

4al ,)w,r the, tr;u'r, where each {,vent transforms the formul;t..Note t.h;tt the,' fleW

formula t,hat is generated in each step is ;tIways kept small by being re_lu(:ed r,o

normal form via the equations in r.he PROP-CALCmodule in Subsection 2.2. [n fact.
<he new formula consists of boolean combinations of subformulae of the initial

formula, kept m a minimal canonical form. Therefore. the algorithm is linear

in the size of _he trace, and worst-case exponential in the size of the formula.

However, it seems that this exponential complexity in the size of the formula is

more of theoretical importance than practical, since in general the size of the

formula grew only twice or less in our experiments, l'f speed is crucial and the

above procedure turns out to be still too slow, then one can statically generate
all formula_ in which a formula can transform and store them as the states of

an automaton, the edges being the possible events. Then when a new event is
generated by the monitored program, one could directly go to the "nexC state

of the automaton without any logical reasoning. We have implemented an im-

proved version of such a procedure (in which only a minimal subset of atomic

propositions are evaluated); details regarding this implementation will appear

elsewhere, but an informal description can be found in [13).
'verification results are very encouraging and show that this optimized seman-

tics is orders of magnitudes faster than the first semantics. Traces of less than

10,000 events are verified in milliseconds, while traces of 100,000 events never

needed more than 3 seconds. This technique scales quite well; we were able to

monitor even traces of hundreds of millions events. As a concrete example, we

created an artifici,M trace by repeating 10 million times the 10 event trace a b,

a, c a, a b, c b, a b, a, c a, a b, c b, and then checked it against the for-

mula [] (a -> <> b). There were needed 4.9 billion rewriting steps for a total of
about 1,500 seconds.

4.2 Correctness and Completeness

In this subsection we prove that the algorithm presented above is correct and

complete with respect to the semantics of finite trace LTL presented in Section
3. The proof is done completely in Maude, but since Maude is not intended

to be a _heorem prover, we actually have to generate the proof obligations by

hand. However, the proof obligations below could be automatically generated by

a proof assist;rot like Kt:MO [7] or a theorem prover like PVS I23J6.

Theorem 1. For any tracer and any formula X, 1" I= _ if and only if r I- X.

Proof Bv induction, both on traces and formulae. We first need to prove two
lernmas, namely that the following two equations hold in the context of both L1"L
and LTL-REVISED:

6 We've a.lreadv done it in PVS, but we prefer to use only .Maude in this paper.



_'i_ prr_vi_ _ht'lll _)y "_t, rllCt.lll';k[ indllCtio[l o[I [h_' I'ornil_l;_ X. CozIat.alltS e ;ini_ x _Ire.

[l(-e_b:¢i ill ,Jr_[cr r,o prove the first [_JIlllll& Vi_l t, hc [,hcorcnl of Cf,qlSt,_l.ll_,.'J. However,

:im'e w_, prove r,he s_'cond [emma by str_ctural induction on I, we not, only have

:.o ad_f r,wo constants e anti t for the universally quantified variables g and T. but

also two other constants y and z standing for formulas which {:an be combined via

operators so give other formulas. The induction hypothesis for the second lamina

is added to the following specification as equations. Notice that we merged the

two proofs _o save space. A proof assistant like KUMO or PVS would prove them

independently, generating only the needed constants for each of them.

fmod PR_OF-OF-LE._MAS is

ex_ending LTL .

extendin_ LTL-REVISED ,

op • : -_ Even_ , op _ : -> Trace .

ops a b c : -> A_om . ops y z : -> Forlula .

eq. I= y = t I- 7 .

sq s I= Z = • {- Z .

eq a,_ I= y • t J= y{e} .

eq e,t I = a • C I" z{e} .

eq b{o} = _,rue .

eq c{e} = false .

endfm

It is worth reminding the reader at this stage that the functional modules in

Maude have initial semantics, so proofs by induction are valid. Before proceeding

further, the reader should be aware of the operational semantics of the operation

_==, namely that the two argument terms are first reduced to their normal forms

which are then compared syntactically (but modulo associativity and commuta-

tivity); it returns true if and only if the two normal forms are equal. Therefore,

the answer _ruo means that the two terms are indeed semantically equal, while

false only means that they couldn't be proved equal; they can still be equal.

red (e I= a =- e I- a) _d (e I= true == • I- true)

and (e 1= false == • l- false) and (e 1= y I\ z -= • I- y /\ z)

and (e I= 7 ++ z == • I- y ++ z) and Ce 1= [] y -= • I- [] y)

and (e I= <> y == s i- <> y) _nd (e I- y U z _= e i- y U z)

_.ud (e I= o y == • I- o y)

and (e,_ ] = true == _ I = CZ_ae{e}) aad (e,'¢ I= false =- 1: 1= £alse{e})

and (e,_: l= b == c I= b'(o}) and (e,C I" c == :: l" c'Ca})

and (e,t. I= y /\ z == c I= (y /\ z)(e}) _md (e,c 1" y *+ a -= c I= (y ++ z){e})

and. (e,': I= [] y =- _ l= (C] y)(e}) and', (a,'.. _,, <> y == r. t= (<> y)(e}-)

_,.ad Ca,= I= y U z -= r. I= (y 'J z}{e}) and. (e.c I" o 3, "= '_ I" (o i){e}) .

It took Maude 129 reductions to prove these lemmas. Therefore, one can safely

add nov,. these lemmas as follows:

fmod LERMAS is

procec_ing LTL .

pro_ec=ing LTL-KEVISKD .

va_r g : Event. vex T : Trace . vex I : Formula .

eqg I= I wE I- X .

eq [,T i- I = T ]= X{E} .

endfm

Vv'e can now prove the theorem, by induction on r.races. More precisely, we show:



/2(Ei :tm[

r(r) ir:ll>li,'>, rf_:.T), t_r ;dl ,,v-rV.s E :,m[ r,r;tc._ T.

'.vh_,r_, /7'_T,; is r.:l_tpr_'_lic:ur 'f_r;_ll f(_rmul;ts :(.T I: X itf F i- X" -l'hi.s imlilcri_)n

_mod ?ROOF-OF-THEOREM LS protec_Lng LEMMAS

op _ : -> _vent opt -_ Tr_ce , op _ : -> Formula

vat _ Formula .

oq : I= I * t I- I .

oadfm

red e I= I == • I- x

red e,x I= I == e,_ I- I

Notice the difference in role between the constant x anti the variable x. The first

reduction proves the base case of the induction, using the theorem of constants

for the universally quantified variable x. In order to prove the induction step,

we first applied the theorem of constants for the universally quantified variables

0_ and T, then added 7_(t) to the hypothesis (the equation "'eq t I-- X = : I-

X ."), and then reduced _(e :) using again the theorem of constants for the

universally quantified variable x. Like in the proofs of the Iemmas, we merged

the two proofs to save space.

5 Conclusions and Future _Vork

We have presented a finite trace semantics of LTL in the Maude logic together

with a much more efficient version based on formula transforming state changes.

The formula transformation approach can be regarded as a self contained result

with interest to at least the rewriting and temporal logics communities. However,

what perhaps makes it more interesting is that its integration into the general

program monitoring framework JPAX seems to be quite efficient for practical

purposes, allowing an elegant fle:dbility in the choice and design of requirement

languages. This can be useful not only for research projects and educational

purposes, but also for real-life projects, where requirement languages may be

domain or application specific. In principle what Maude provides is a static

parsing environment for defining syntax, combined with a rewrite-based dynamic

execution environment for defining efficient semantics over the parse trees.

A current research activity is, however, to find yet more efficient represema-

tions of future time LTL formula for the purpose of achieving an absolute optimal

algorithm for testing their satisfaction on execution traces. This becomes espe-

cially crucial for an implementation in a standard programming lang-uage such az

Java. In [13] we describe such a provably minimal finite state machine represen-

tation. An efficient dynamic programming algorithm is furthermore described in

[22], although it examines the trace backwards, requiring the :race to be stored.

As it turns out, this algorithm applies more naturally to the checking of past

time LTL, since this can be done by a forward examination of the trace. Of fu-

ture work can be mentioned that we will experiment with new logics in Maude,

such as interval and real time logics and UML notations. We have already in [12,



131 ,i_'s.ril.'_l h_Jw l_;,sr. Iim_, [.['[. _:.m 1., :_la'cill,'l.lv _h'tine_l ia _la,l_h' {u_,h, th;_t

d_i'_,.v,_rki> ,[iH'_,r_,txriI'_rztdi_',ivrl;um-pr_r:tmmin_ ;d_c_rirhHl.5_rp;t,_r, rNTW

L['L l_l_r,m,.'m,i_m_,,'ll,

.L-__l_,_.ril_,,_lirti[2. I:{I.IP\X pr.,.'idesm ,_._hlir,i_m r..sped_c:Iri.n h_._i rnon-

ir._>rirl_ ;ds_ ;t c;tpabili_:.?" o[ ch_'cking _'rror p;tt.r.(!rn_ in mult.i-thre_tde(l progr;mts.

F'ur.m'e work will r.rv to _lew:l,q) new algorithms for detecting orh_,r kinds _f con-

currency errors t.han ,lara r;_ces ;rod deadlocks. This im:ludes sr.udying comph_r.e[y

new funcrJomdit,ies of the system, such as guided execur,ion via code instrumea-

r,ar, ion r,o explore more of r,he possible interleavings of a non-determinisr, ic con-

curren_ program during r,esting. Last, but, no_ leas_, program monitoring can no_

only be applied during program r.est, ing_ but, perhaps more interestingly, during

operation, and be used m influence _he program behavior in case requirements

ge_ violated. Our future research will focus on {his a,specL
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